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Abstract

We describe a magnetohydrodynamic constrained energy functional for equilibrium
calculations that combines the topological constraints of ideal MHD with elements of Taylor
relaxation. Extremizing states allow for partially chaotic magnetic fields and non-trivial
pressure profiles supported by a discrete set of ideal interfaces with irrational rotational
transforms. Numerical solutions are computed using the Stepped Pressure Equilibrium Code,

and benchmarks and convergence calculations are presented.

(Some figures may appear in colour only in the online journal)

1. Introduction

The construction of magnetohydrodynamic equilibria in three-
dimensional (3D) configurations is of fundamental importance
for understanding magnetically confined plasmas. To illustrate
both the importance and subtlety of this problem: it is
widely accepted that quiescent plasma confinement depends
on constructing equilibria that are stable to small perturbations,
which necessarily presupposes the existence of an equilibrium;
however, as pointed out by Grad [1], ‘a more primitive reason
than instability for the lack of confinement is the absence of
an appropriate equilibrium state’.

Given that all experimental confinement devices lack
a continuous symmetry to some extent, either slightly so
because of discrete coil effects, error fields, or intentionally
applied resonant magnetic perturbations [2], or greatly so
because of intrinsic 3D shaping such as in the stellarator
class [3,4] of confinement devices, the computation of 3D
equilibrium solutions with arbitrarily chaotic fields is of
foremost importance.

The theory and numerical construction of 3D equilibria
is highly complicated by the fact that toroidal magnetic fields
without a continuous symmetry are generally a fractal mix
of islands, chaotic field lines and magnetic flux surfaces.
Any deformation of the plasma boundary, or error field, that

0741-3335/12/014005+07$33.00

resonates with rational field lines will generally (in the absence
of ideal surface currents at the rational surfaces) result in the
formation of magnetic islands. Where these islands overlap,
regions of connected chaos, so-called stochastic volumes, will
form [5]. According to Greene [6], ‘there is a stochastic region
in the immediate vicinity of every chain of periodic orbits’. In
contrast, the Kolmogorov—Arnold—Moser theorem indicates
that flux surfaces with ‘sufficiently irrational’ rotational
transform can survive small perturbation [7, 8]. The rotational
transform, ¢, is considered sufficiently irrational if it satisfies a
Diophantine condition, e.g. |t — n/m| > rm~* for all integers
n and m, and where r > Q and k > 2.

The fractal phase-space structure of non-symmetric,
and therefore generally non-integrable (i.e.  such that
a continuously nested family of flux surfaces does not
exist), magnetic fields has important consequences for the
construction of scalar-pressure ideal equilibria, i.e. solutions
to Vp = j x B. Ideal force balance immediately requires
that B-Vp =0, so that the pressure is constant along a
field line, which in turn implies that the pressure must be
constant in the stochastic volumes. Pressure gradients can be
supported on the flux surfaces that survive perturbation, but any
non-trivial continuous pressure profile that is consistent with
Vp = j x B and the fractal structure of a non-integrable field
must have a gradient that is everywhere discontinuous or zero

© 2012 IOP Publishing Ltd  Printed in the UK & the USA
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Figure 1. Diophantine pressure profile with » = 0.2 and k = 2,
normalized so that p(0) = 1 and p(1) = 0. The large rectangular
region is a magnification of the small rectangular region.

[9] and is something akin to a devil’s staircase. For example,
consider the pressure profile, p(x), defined by p’(x) = 1
if |x —n/m| > rm~* for all rationals n/m, and p’(x) = 0
otherwise. The function p’(x) does not have a well defined
Riemann integral, but an approximation to p(x) is shown in
figure 1.

A continuous profile may be constructed, but the gradient
is infinitely discontinuous. This immediately causes problems
for the construction of scalar-pressure equilibria, as it is the
pressure gradient, Vp, rather than the pressure itself, that
appears in Vp =3 x B. Grad went on to conclude that
non-trivial equilibria must have ‘very pathological pressure’
[1]. The pathological structure of scalar-pressure, ideal-MHD
equilibria with chaotic fields causes problems for existing
numerical algorithms [9].

The most elegant approaches to numerical construction
of equilibrium solutions employ energy principles, and this
approach began to be developed as a practical method for
numerical calculation of 3D ideal-MHD equilibria quite early
in the history of computational plasma physics [10-13].
Today the VMEC code [14], which has been continuously
developed since that time, has become the most widely used
3D equilibrium code.

Such codes seek solutions that minimize the plasma en-
ergy, U = [[pi/(y — 1) + B*/2p0] dv, butif this functional is
minimized allowing for arbitrary variations without constraints
then the minimizing state is trivial [15]. Instead, in ideal-MHD
codes, the plasma energy is minimized under the continuous
infinity of constraints implied by the ideal-MHD equations at
each point in the plasma, e.g. § B =V x (§ x B), represent-
ing frozen-in flux in each plasma element. However, such
variations do not allow the topology of magnetic surfaces to
change, so that reconnection and relaxation phenomena are
precluded. If the topology assumed in the initial guess for the
equilibrium is that of a nested family of flux surfaces foliating
the plasma domain, then it is constrained to remain so dur-
ing the energy minimization, so that the generic state for a 3D
equilbrium, one with magnetic islands and chaos, cannot be
obtained in these ideal codes, limiting the attainable precision
because of the formation of unresolved current singularities.

Thus we need to reduce the number of constraints if we
are to have a well-posed energy principle for 3D equilibria, the
most extreme reduction being provided by Taylor relaxation
[16]. Allowing for arbitrarily small resistivity and arbitrary
variations, so that the topological constraints on the plasma
evolution are removed, Taylor argued that a weakly resistive
plasma will relax to minimize the plasma energy subject
to the constraint of conserved helicity, H = [ A - Bdv.
The resulting state is a force-free field, and so a globally
relaxed Taylor state cannot support a pressure gradient—the
magnetic field topology is not constrained but the pressure is
constant everywhere, suggesting that a few more constraints
are required to model a confined plasma satisfactorily.

Augmenting the helicity constraint with one or more
smooth moments of A - B leads to a practical approach to
constructing axisymmetric equilibria [17, 18] with non-trivial
pressure profile and low free energy to model a toroidally
confined plasma with good stability properties.

However, this approach requires good magnetic surfaces
everywhere in the plasma and is thus limited to integrable
magnetic fields. For the 3D equilibrium problem
we are forced to consider non-smooth constraints [19],
giving an energy principle that allows for equilibria with
partially chaotic fields and non-trivial, but discontinuous,
pressure profile. This model, which we call multi-region,
relaxed magnetohydrodyamics, or MRXMHD, combines ideal
topological constraints at a discrete set of selected irrational
surfaces with Taylor relaxation in between. This is a partial
relaxation model so that non-zero pressure gradients are
supported at the selected irrational surfaces but topological
reconnection is possible at the intervening rational surfaces.
This model is described in section 2, and in section 3 we
present some illustrations of MRXMHD equilibrium solutions,
as computed by the newly implemented Stepped Pressure
Equilibrium Code, SPEC.

2. Multi-region, relaxed MHD

The plasma is modeled [19] as a collection of nested annular
regions, V, for [ = 1, .., N, which are separated by a discrete
set of toroidal surfaces, Z;, so that ) is bounded by Z;_; and
Z;. In each V,, the magnetic field relaxes to minimize the
plasma energy, subject to the constraint of conserved helicity
and mass/entropy. On each Z;, we apply the constraints of
ideal MHD. Equilibrium states are extrema of the constrained
energy functional,

F =Y (U —wH/2—vM/2), (1)
!

where the plasma energy, helicity and mass/entropy in each
annulus are given, respectively, by

B2
U = f (L + —’) dv, )
v\ Yy —1 2uo
Hl = A[ . B] dU, (3)
Vi
_ 1y
M; = f p;"7dv. 4
Vi
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The magnetic field is described by a vector potential,
B; =V x Ay, the u; and v; are Lagrange multipliers, and y is
the ratio of specific heats. Hereafter, the permeability of free
space factor, 1o, will be omitted.

In extremizing F we allow for arbitrary variations in the
pressure, §p;, and the vector potential, § A;, in each annulus,
and the geometry, &;, of the toroidal surfaces. To enforce
the constraint that the magnetic field remains tangential to
the toroidal surfaces, on the Z; the variations in the field are
related to the variations in geometry using a gauge such that
8A = & x B. We appropriately call these toroidal surfaces
ideal interfaces.

The first-order variation in the free-energy functional in
each annulus is

+ (Vx B, — w1 By) -8A;dv

P 1/)/_}3_12 )
A (L -E)meos o

The equilibrium is thus comprised of a family of nested
Beltrami fields, where V x B; = u; By in each annulus, the
pressure is constant in each annulus, and the total pressure is
continuous across the ideal interfaces, [[p + B%/2]] = 0.

Pressure is supported by the ideal interfaces, across
which a pressure discontinuity is allowed provided there is
a compensating discontinuity in the tangential field. The
equilibrium solutions are topologically constrained, partially
relaxed, stepped-pressure states. Topological constraints on
magnetic reconnection have been observed in a similar context
[20]. A strong motivation for adopting this model is that Bruno
& Laurence [21] have proved that, under certain conditions,
such equilibria exist. This places the MRXMHD model on a
strong mathematical foundation.

In addition to a prescribed boundary, we define the
equilibrium by prescribing pressure and rotational-transform
profiles, given as functions of the toroidal flux as described
below.

The pressure is constant in each annulus but the rotational
transform, well defined on flux surfaces and defined by suitable
interpolation across chaotic regions, changes across the annuli.
Given that the topology of the field is arbitrary within the
annular regions, and that only the interfaces are guaranteed
to be flux surfaces, the rotational transform is prescribed only
on the ideal interfaces. To avoid discontinuous rotational-
transform profiles we require the rotational transforms to be the
same on each side of an interface. So, to specify the pressure
and rotational-transform profiles, we give the toroidal flux and
the pressure, p;, in each annulus, and the rotational transform,
t;, on each interface, for/ = 1, N. We hold the toroidal flux in
each annulus fixed (though for reversed-field pinches it would
be more appropriate to fix the poloidal fluxes). Also, as is
typically done in equilibrium calculations, we hold the p; and
t; constant throughout the calculation. However, it should be
noted that this is not consistent with the variational principle,
so the constraints (equations (3) and (4)) must be adjusted
iteratively during the calculation.

An initial guess for the geometry of the ideal interfaces,
7;, is given in cylindrical coordinates, (R, ¢, Z), via

Ri(0.¢) =Y Rijcos(m;0 —n;¢)
j
and

Z(0.¢) =Y Zyjsin(m;0 —n;0),
J

where 6 is at this stage an arbitrary poloidal angle and
. =—¢. (We have restricted attention to stellarator-
symmetric configurations [22].) The toroidal and poloidal
fluxes, v¥,; and v, ;, enclosed by each interface are also
assumed given. A piecewise-cubic interpolation of the
interfaces using the radial coordinate s = /v, provides a
smooth, global coordinate system, (s, 8, ¢), with coordinate
Jacobian /g = (Vs - VO x V¢)~ L

The vector potential in each annulus is written
A = ApVO + AV, and Ag and A, are discretized
using a mixed Fourier, finite-element representation, e.g.
Ag = Zj Ag,j(s) cos(m ;0 — n;¢), and the radial dependence
is described by Ay ;(s) =D, As,jiwr(s), where @(s)
are piecewise-quintic basis functions with finite support,
defined on a radial sub-grid (an example of which is
shown below). The Agy ;;x and A, ;; are constrained
to ensure that the flux constraints are satisfied, and that
/8B Vs =0yA; —09;Ag =0 at the interfaces, but is
otherwise general. Setting the derivatives of equation (1)
with respect to Ag jx and A, j to zero allows each B; to
be efficiently determined as the solution to a sparse system
of linear equations. Each B; depends only on the geometry
of bounding interfaces, Z;_; and Z;, the enclosed fluxes, and
the Lagrange multiplier, u;, which is related to the parallel
current. This must be adjusted to ensure that the rotational
transform on the ideal interfaces matches the prescribed value.
The computation of the Beltrami fields in multiple regions is
trivially distributed across multiple processors.

The innermost volume contains the coordinate origin,
where the coordinate Jacobian goes to zero. At the origin,
we enforce the condition that the geometry of the interfaces is
regular, and the geometry of the innermost interface is obtained
by extrapolation.

The interface geometry must be adjusted in order to
satisfy force balance, [[p+ B?/2]]=0. The first-order
variation in the energy functional, F, depends only the normal
component of the geometrical variation, £ -mn. In order
to obtain a unique Fourier representation of the interface
geometry, we follow the approach used in VMEC [23] and
construct an angle that minimizes a measure of the spectral
width, >~ (m" + n?)(R? + Z]z), where p and ¢ are arbitrary
integers controlling the degree of spectral condensation (in
the following section we choose p = 4 and ¢ = 4), and so
obtain an optimally accurate representation of the interface
geometry with a finite set of Fourier harmonics. Allowing
for tangential variations of the form, §R = 9dyRu and
8Z = 0yZ bu, the condition that & minimizes the spectral
width of each interface is I, = R, X + 99Z; Y = 0, where
X = Zj(mf + I’l(jI»)thj COS(ij — n,() and Y = Zj(mf +
I’lj)Zl] sin(m,-@ — l’ljg)
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The interface geometries are described by the R; ; and
the Z;;, which we collect together as a vector, . We
construct a vector of constraints, F, as a collection of the
Fourier harmonics of the force imbalance, [[p + B%/2]]; .
and the spectral constraints, /; ;, at each interface. The task
of constructing equilibrium solutions is thus reduced to the
standard mathematical problem of finding a zero of a multi-
dimensional function, F(x) = 0, which is solved using
a mixed Newton, convex-gradient method provided by the
NAG library. Further details of the algorithm, including
convergence studies and benchmark calculations, will be
presented elsewhere.

An analysis of the force-balance condition,
[[p+B?/2]] = 0, shows that, generally, in order for an interface
to support pressure, it must have irrational rotational trans-
forms on each side [24]. As previously mentioned, we take
these to be equal. ‘Noble’ irrationals play an important role in
chaos as, typically, flux surfaces with noble rotational trans-
form are locally the most robust [6,25]. We thus constrain
the ideal interfaces that support pressure to have noble rota-
tional transform, given as a Fibonacci-ratio limit: p,41/gn+1 =
(Pn—1+ Pn)/(gu-1+ qn) as n — o0, beginning from any pair
of rationals, p;/q; and p,/q, which satisfy | p1g2 — p2g1| = 1.
The limiting ratio is t = (p; + yp2)/(q1 + vq2), where
¥y = (1 ++/5)/2 is the golden mean. As mentioned earlier,
adjustments must be made iteratively during the equilibration
calculation. Specifically, we adjust the helicity multiplier, u;,
which is related to the parallel current, and the poloidal flux
in each annulus to satisfy the interface rotational-transform
constraints.

3. Non-axisymmetric examples

In the following we present numerical examples of stepped-
pressure equilibria with 3D boundaries. The following
examples are constructed by applying a non-axisymmetric
deformation to an otherwise axisymmetric configuration. The
axisymmetric configuration is defined by a fixed boundary with
a major radius of 1 m and a circular cross-section with minor
radius 30 cm. For simplicity of illustration, and computational
expediency, we restrict attention to equilibria with only four
annular regions, bounded by four interfaces. The pressure
profile, shown in figure 2, is a piecewise-flat approximation
to p(¥) = po(l — 2¢ + ¥?), where po is a scaling
factor. The interface rotational-transform profile is a discrete
approximation to t (1) = 0.883 964 2543 — 0.779 992 9021,
as described in table 1 and shown as small squares in figure 3.

Below we examine two non-axisymmetric configurations.
The first is a zero-beta configuration (i.e. py = 0) with an
m = 0, n = 1 deformation of the boundary. This results in
an equilibrium with a helical magnetic axis. In the second
‘high-pressure’ equilibrium, py is increased in order to induce
a3 cm Shafranov shift of the magnetic axis of the axisymmetric
configuration.

At this point we stress that, despite the fact that only 4
interfaces were used and the piecewise-flat approximation to
the smooth pressure profile seems crude, this is sufficient to
describe the effect of the pressure on the global geometry

0.8

0.6

0.4

0.2r-

0.0 3 . . | . %

0.0 0.2 0.4 0.6 0.8 1.0
S

Figure 2. Smooth pressure profile, p(¥) = 1 — 2y + 2, supplied
to VMEC, and the stepped pressure profile used in SPEC.

Table 1. Ideal-interface rotational transform.

¢ (2

(1) (6+y7)/(T+y8) =0.8687325...  0.0195280
() (2+y3)/GB+y4) =0.7236068...  0.2055884
(3) (1+y1)/2+y3)=0.3819660...  0.6435933
@  (1+y1)/©+y10)=0.1039714... 1.0000000
0.8

0.6
L 1/2

0.4+

0.2

0.0 0.2 0.4 0.6 0.8 1.0

S

Figure 3. Rotational-transform profile (black line) for the
axisymmetric ‘high-pressure’ configuration shown in figure 4. The
small squares indicate where the rotational transform is constrained.
The smooth profile (gray line) is supplied to VMEC.

of the equilibrium. To illustrate this, we compare the
axisymmetric high-pressure equilibrium computed with SPEC
(using the stepped-pressure profile) to the corresponding
VMEC equilibrium (computed with the smooth pressure
profile). For the VMEC calculation, the smooth rotational-
transform profile shown in figure 3 was used. Shown in figure 4
are the cross-sections of the interfaces as computed by SPEC
and the corresponding irrational flux surfaces computed by
VMEC. That the geometry of the interfaces agrees so well
is partly due to the fact that the Shafranov shift is rather
insensitive to the pressure profile itself, but depends on the
integral of the pressure, i.e. the plasma beta. Also, the
location of the magnetic axis and the geometry of the innermost
interface computed by SPEC agree well with that computed by
VMEC.

In figure 4 we also show the radial sub-grid resolution used
in each annulus. In total, there are 78 global radial degrees of
freedom used in the piecewise-quintic representation of each
Fourier harmonic of the magnetic vector potential.

Between the interfaces in the SPEC equilibrium, the
rotational transform is not given a priori: the rotational
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-0.2F

Figure 4. The ideal interfaces of the high-pressure equilibrium
computed by SPEC (thin lines, both upper and lower half) and the
corresponding irrational surfaces of the VMEC equilibrium (thick
lines, upper half only). In the lower half, the radial sub-grid and the
computational angle coordinate is also shown (gray lines).

transform within each annulus is to be determined as part of
the equilibrium calculation. An approximation to the global
rotational transform may be constructed a posteori by field line
following, and this is shown in figure 3.

To this high-pressure axisymmetric equilibrium we add a
boundary perturbation that resonates with low-order rational
surfaces inside the plasma, which induces a large fraction
of the equilibrium magnetic field to become chaotic. While
the size of the magnetic islands created by 3D shaping is
determined by the magnitude of the resonant component of
the deformation, and the shear, their location is determined
by the rotational-transform profile. The rotational transform
is specified discretely and is only constrained at the interfaces
themselves; however, with the interface rotational transforms
given in table 1, the location of the t+ = 1/2 resonance is
guaranteed to lie in the third annulus (that lies between the
second and third interfaces). Other n = 1 resonances, such as
thet = 1/3,¢t = 1/4 and ¢t = 1/5 resonances, are guaranteed
to lie in the fourth (outermost) annulus. The m = 0,n = 1
resonance is not present.

In all of the calculations referred to below, force balance
at each interface is satisfied to within |F| < 107'2, or less.

3.1. Helical magnetic axis

For the zero-beta equilibrium, with py = 0, the fixed outer
boundary is described by

R =1.0+38cos(¢)+0.3cos(®),
Z = §sin(¢) +0.3sin(6),

where the helical deformation is § = 0.035. The Fourier
representation of both the ideal interfaces and the vector
potential in each annulus includes the modes 0 < m < M and

—N <n <N, for (M, N) = (6,3). Poincaré plots of the
equilibrium are shown on three cross-sections in figure 5.

Non-axisymmetric configurations are not guaranteed to
be integrable, but neither are they guaranteed to be globally
chaotic. If one were to look closely, small islands may be
observed at all the rational surfaces inside the plasma; but
in this case, because the non-axisymmetric deformation of the
boundary does not directly resonate with any rational surfaces,
no large island chains will form.

To illustrate an equilibrium that does have a significant
volume of chaotic fields, in the next example we include large
boundary deformations that resonate with low-order rational
surfaces.

3.2. Strongly chaotic equilibrium

To drive islands in the high-pressure configuration we include
a deformation of the minor radius that resonates directly with
thet = 1/2 and ¢+ = 1/3 rational surfaces. The outer boundary
is given by

R=1.0+[0.3+68cos(20 —¢) + 5 cos(30 — ¢)]cos(0),
Z =1[03+68cos(20 — &) +6cos(360 — ¢)]sin(B),

where the magnitude of the deformation is given § = 0.003.
The Fourier representation includes the modes 0 < m < M
and —N < n < N, for (M, N) = (9,4). The field in the
outermost annulus is now strongly chaotic. This is because this
annulus contains several low-order resonances, e.g. t = 1/3,
which is directly driven by the applied boundary deformation,
and also the t = 1/4,¢ = 1/5 and ¢t = 1/6, and islands will
form at these locations islands because of toroidal and poloidal
coupling (figure 6). These islands are quite close together and
the magnitude of the deformation is sufficient to ensure that
these islands overlap.

To confirm that this solution is converged with respect
to Fourier resolution, we recompute this equilibrium using
the Fourier resolution (M, N) = (6,1), (7,2) and (8, 3),
and compare the geometry of the interior interfaces. Simply
comparing the Fourier harmonics of the interfaces at different
resolutions may give misleading results because, as the Fourier
resolution is increased, the spectral condensation algorithm has
more opportunity to exploit the tangential freedom, and thus
to give a slightly different angle parametrization of the same
geometrical interface. To eliminate any uncertainty arising
from this, we introduce the following angle-independent
measure of the geometrical difference between a given pair
of interfaces,

dy (0, 0) =/ [x0) — xun @]+ [y©®) — yun @],

where x(0) = R(0, &) and y(0) = Z(0, &) is the interface
cross-section curve of a reference solution (specified below),
and xy ny(a) = Ry n(@, §o) and yy n(a) = Zy n(a, §p) is
the cross-section curve of the solution computed with Fourier
resolution (M, N), on the plane { = ¢;. We then compute the
angle-independent measure of the error according to

2
Ay = f Dun@WT @2 +y @2 ds, (6
0
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Figure 5. Poincaré plots (gray dots) of the helical axis equilibrium on (a) ¢ = 0; (b) ¢ = 7/2; and (c) { = . The ideal interfaces are

shown with black lines.

(b)

0.2

-0.2F

(©

Figure 6. Poincaré plots (gray dots) of the resonantly deformed equilibrium on the (a) ¢ = 0, (b) ¢ = 7/2, and (¢) ¢ = 7 toroidal

cross-sections. The ideal interfaces are shown with black lines.

where Dy n(0) = min, dy v (0, ). Taking the reference
configuration to be the solution computed with the highest
Fourier resolution, i.e. with (M, N) = (9,4),sothat Ag4 =0
by definition, the convergence error for the interior interfaces
is shown in figure 7.

4. Comments

In this paper we have constructed stepped-pressure equilibria
with only four nested annular regions, as this seems to be
sufficient in order to capture the global deformation induced by
non-trivial pressure, as confirmed by figure 4. It is possible to
compute equilibria with arbitrarily many interfaces and annular
regions; however, as the number of ideal interfaces increases,
and the separation between the ideal interfaces decreases,
the present modified-Newton algorithm becomes more fragile
because of the emergence of small eigenvalues in the matrix,
V. In future work we hope to explore alternative numerical
algorithms for constructing solutions. Given that stepped-
pressure equilibria are defined as extrema of a constrained
energy functional, it should be possible to implement a rapid,
preconditioned descent-style algorithm [26]. Also in future

1073

107

M=6 M=7 M
N=1 N

Figure 7. Angle-independent measure of the error in the interior
interface cross-section geometry, with reference configuration
(M,N)=(9,4) and §, = 0.

work, we intend to compute the Beltrami field in the innermost
volume (which contains the toroidal coordinate singularity), so
that the geometry of the innermost interface can be determined
directly from force balance, rather than appealing to
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regularity conditions at the origin and employing extrapolation
methods.

Specifying the profiles discretely may seem arbitrary, but
itis a practical means of maintaining some a priori control over
the pressure and rotational transform while making minimal
assumptions regarding the topology of the field. In fact, the
only topological assumption made is that, where there are
pressure gradients there must be irrational flux surfaces. Thus
the prescription of the profiles may be made arbitrarily fine-
grained as long as magnetic surfaces exist. Where they do not
exist, force-free fields are the only choice consistent with no
mass flow, Beltrami fields being the most practical.

To conclude, we make some comments regarding
the existence of MHD equilibrium solutions, and the
‘pathological’ nature of the pressure profile. Earlier we
commented how solutions to Vp = j x B with non-
integrable magnetic fields with a fractal phase space must have
pressure profiles with infinitely discontinuous gradient. In
the MRXMHD model, the pressure profile is piecewise flat,
and possibly discontinuous at the ideal interfaces. Such a
profile may also be described as pathological; however, the
MRXMHD model is based on an integral principle, and a
discontinuous pressure profile remains an integrable function,
provide the number of discontinuities is finite, as it certainly
is in the above calculations. The MRXMHD equilibrium is
well-defined mathematically, and at no point in the numerical
construction of the stepped-pressure equilibrium is the pressure
gradient required.

In the analysis of the force-balance condition,
[[p + B%/2]] =0, arising in the Euler-Lagrange equation,
equation (5), it was shown [24] that generally pressure can
only be supported if the interfaces have irrational rotational
transform. This in turn places constraints on the pressure
and rotational-transform profiles that are used to define the
equilibrium: if pressure is placed on the rational interfaces,
then no equilibrium solution will exist.

An analogous condition holds for ideal, scalar-pressure
equilibria with nested flux surfaces, i.e. integrable magnetic
fields. States that minimize the plasma energy, U, allowing
for ideal variations, must satisfy the Euler—Lagrange equation,
V p = j x B, whichis the analogous statement of force balance
for ideal-MHD equilibria with nested flux surfaces, i.e. ideal
equilibria that are globally topologically constrained, rather
than discretely topologically constrained as in MRXMHD. An
analysis of this equation shows that there is a singularity in
the resonant harmonic of the parallel current at each rational
surface [27], which are dense in any system with shear.
In addition to the ideal §-function surface currents required
to shield resonant fields, that would otherwise result in the
formation of magnetic islands, there generally exist pressure-
driven 1/x style singularities, where x = (¢ — n/m), which
are required to satisfy quasi-neutrality. Writing the current
as j = oB + j,, and insisting that V - j = 0, the parallel
current, o, must satisfy B - Vo = —V . j,, where the
perpendicular current is given by force balance. The magnetic
differential equation is singular, and solvability conditions on
the perpendicular current must be satisfied if a single valued
o is to exist [28]: an arbitrary 5, = B X Vp/B2 is not

consistent with quasi-neutrality!  The singularity in the
B - V operator is exposed by employing straight-field-line
coordinates, which can be constructed globally if, and only if,
the magnetic field is integrable, so that ,/gB-V = 0;+t35. The
solvability condition that must be satisfied for quasi-neutrality
is that, in arbitrary geometry, the pressure gradient must go
to zero at each rational surface at least as fast as (t — n/m),
and at least as fast as (¢ — n/m)? if the pressure is to remain
monotonic. Given that the rational surfaces are dense (i.e.
arbitrarily close to any point in space) in plasma equilibria
with shear, this results in a pressure profile that may also be
described as pathological.

The MRXMHD approach seeks integrable solutions,
rather than differentiable solutions. The philosophy of seeking
weak solutions was endorsed by Garabedian, who claimed
that ‘differentiable solutions of the equilibrium equations do
not exist in general when the geometry is three-dimensional,
so that weak solutions are required to model the physics
adequately’ [29].
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